Likelihood Decision Functions

Marco Cattaneo
Department of Statistics, LMU Munich

GPSD 2012, Mainz, Germany
9 March 2012
notation

- in statistics, L usually denotes:

likelihood function (here λ)

loss function (here W)

statistical model: (Ω, F, P_θ) with $\theta \in \Theta$ (where Θ is a nonempty set) and random variables $X : \Omega \to X$ and $X_i : \Omega \to X_i$
notation

- in statistics, L usually denotes:
 - likelihood function
notation

- in statistics, L usually denotes:
 - likelihood function
 - loss function
notation

- in statistics, L usually denotes:
 - likelihood function (here λ)
 - loss function (here W)
notation

- In statistics, L usually denotes:
 - likelihood function (here λ)
 - loss function (here W)

- Statistical model: $(\Omega, \mathcal{F}, P_\theta)$ with $\theta \in \Theta$ (where Θ is a nonempty set) and random variables $X : \Omega \to \mathcal{X}$ and $X_i : \Omega \to \mathcal{X}_i$
loss function

- a statistical decision problem is described by a loss function

\[W : \Theta \times D \rightarrow [0, +\infty[, \]

where \(D \) is a nonempty set
loss function

- a statistical decision problem is described by a loss function

\[W : \Theta \times \mathcal{D} \rightarrow [0, +\infty[, \]

where \(\mathcal{D} \) is a nonempty set

- intended as unification (and generalization) of statistical inference,
loss function

- a statistical decision problem is described by a loss function

\[W : \Theta \times D \rightarrow [0, +\infty[, \]

where \(D \) is a nonempty set

- intended as unification (and generalization) of statistical inference, in particular of:
 - point estimation (with \(D = \Theta \))
 - hypothesis testing (with \(D = \{H_0, H_1\} \))
loss function

- A statistical decision problem is described by a loss function

\[W : \Theta \times \mathcal{D} \rightarrow [0, +\infty[, \]

where \(\mathcal{D} \) is a nonempty set

- Intended as unification (and generalization) of statistical inference, in particular of:
 - Point estimation (with \(\mathcal{D} = \Theta \))
 - Hypothesis testing (with \(\mathcal{D} = \{H_0, H_1\} \))

- Most successful general methods:
 - Point estimation: maximum likelihood estimators
 - Hypothesis testing: likelihood ratio tests
loss function

- a statistical decision problem is described by a loss function
 \[W : \Theta \times D \rightarrow [0, +\infty], \]
 where \(D \) is a nonempty set

- intended as unification (and generalization) of statistical inference, in particular of:
 - point estimation (with \(D = \Theta \))
 - hypothesis testing (with \(D = \{H_0, H_1\} \))

- most successful general methods:
 - point estimation: maximum likelihood estimators
 - hypothesis testing: likelihood ratio tests

- these methods do not fit well in the setting of statistical decision theory: here they are unified (and generalized) in likelihood decision theory
likelihood function

- $\lambda_x : \Theta \rightarrow [0, 1]$ is the (relative) likelihood function given $X = x$, when

$$\sup_{\theta \in \Theta} \lambda_x(\theta) = 1 \quad \text{and} \quad \lambda_x(\theta) \propto P_\theta(X = x)$$
likelihood function

\(\lambda_x : \Theta \to [0, 1] \) is the (relative) likelihood function given \(X = x \), when

\[
\sup_{\theta \in \Theta} \lambda_x(\theta) = 1 \quad \text{and} \quad \lambda_x(\theta) \propto P_\theta(X = x)
\]

(with \(\lambda_x(\theta) \propto f_\theta(x) \) as approximation for continuous \(X \))
likelihood function

- \(\lambda_x : \Theta \rightarrow [0, 1] \) is the (relative) likelihood function given \(X = x \), when
 \[
 \sup_{\theta \in \Theta} \lambda_x(\theta) = 1 \quad \text{and} \quad \lambda_x(\theta) \propto P_\theta(X = x)
 \]
 (with \(\lambda_x(\theta) \propto f_\theta(x) \) as approximation for continuous \(X \))

- \(\lambda_x \) describes the relative plausibility of the possible values of \(\theta \) in the light of the observation \(X = x \), and can thus be used as a basis for post-data decision making
likelihood function

\(\lambda_x : \Theta \to [0, 1] \) is the (relative) likelihood function given \(X = x \), when

\[
\sup_{\theta \in \Theta} \lambda_x(\theta) = 1 \quad \text{and} \quad \lambda_x(\theta) \propto P_\theta(X = x)
\]

(with \(\lambda_x(\theta) \propto f_\theta(x) \) as approximation for continuous \(X \))

\(\lambda_x \) describes the relative plausibility of the possible values of \(\theta \) in the light of the observation \(X = x \), and can thus be used as a basis for post-data decision making

Prior information can be described by a prior likelihood function: if \(X_1 \) and \(X_2 \) are independent, then \(\lambda(x_1, x_2) \propto \lambda_{x_1} \lambda_{x_2} \); that is, when \(X_2 = x_2 \) is observed, the prior \(\lambda_{x_1} \) is updated to the posterior \(\lambda(x_1, x_2) \)
likelihood function

- \(\lambda_x : \Theta \rightarrow [0, 1] \) is the (relative) likelihood function given \(X = x \), when

\[
\sup_{\theta \in \Theta} \lambda_x(\theta) = 1 \quad \text{and} \quad \lambda_x(\theta) \propto P_\theta(X = x)
\]

(with \(\lambda_x(\theta) \propto f_\theta(x) \) as approximation for continuous \(X \))

- \(\lambda_x \) describes the relative plausibility of the possible values of \(\theta \) in the light of the observation \(X = x \), and can thus be used as a basis for post-data decision making.

- Prior information can be described by a prior likelihood function: if \(X_1 \) and \(X_2 \) are independent, then \(\lambda_{(x_1,x_2)} \propto \lambda_{x_1} \lambda_{x_2} \); that is, when \(X_2 = x_2 \) is observed, the prior \(\lambda_{x_1} \) is updated to the posterior \(\lambda_{(x_1,x_2)} \).

- Strong similarity with the Bayesian approach (both satisfy the likelihood principle): a fundamental advantage of the likelihood approach is the possibility of not using prior information (since \(\lambda_{x_1} \equiv 1 \) describes complete ignorance).
likelihood decision criteria

- likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$,
likelihood decision criteria

- likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w' : \Theta \to [0, +\infty]$ and all likelihood functions $\lambda, \lambda_n : \Theta \to [0, 1]$.
likelihood decision criteria

- likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w' : \Theta \rightarrow [0, +\infty[\text{ and all likelihood functions } \lambda, \lambda_n : \Theta \rightarrow [0, 1]$
 - monotonicity: $w \leq w'$ (pointwise) $\Rightarrow V(w, \lambda) \leq V(w', \lambda)$
likelihood decision criteria

- likelihood decision criterion: minimize \(V(W(\cdot, d), \lambda_x) \), where the functional \(V \) must satisfy the following three properties, for all functions \(w, w': \Theta \to [0, +\infty[\) and all likelihood functions \(\lambda, \lambda_n: \Theta \to [0, 1] \)
 - monotonicity: \(w \leq w' \) (pointwise) \(\Rightarrow V(w, \lambda) \leq V(w', \lambda) \)
 (implied by meaning of \(W \))
likelihood decision criteria

- likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w' : \Theta \rightarrow [0, +\infty[$ and all likelihood functions $\lambda, \lambda_n : \Theta \rightarrow [0, 1]$
 - monotonicity: $w \leq w'$ (pointwise) \Rightarrow $V(w, \lambda) \leq V(w', \lambda)$ (implied by meaning of W)
 - parametrization invariance: $b : \Theta \rightarrow \Theta$ bijection \Rightarrow $V(w \circ b, \lambda \circ b) = V(w, \lambda)$
likelihood decision criteria

- likelihood decision criterion: minimize \(V(W(\cdot, d), \lambda_x) \), where the functional \(V \) must satisfy the following three properties, for all functions \(w, w' : \Theta \rightarrow [0, +\infty[\) and all likelihood functions \(\lambda, \lambda_n : \Theta \rightarrow [0, 1] \):
 - monotonicity: \(w \leq w' \) (pointwise) \(\Rightarrow V(w, \lambda) \leq V(w', \lambda) \) (implied by meaning of \(W \))
 - parametrization invariance: \(b : \Theta \rightarrow \Theta \) bijection \(\Rightarrow V(w \circ b, \lambda \circ b) = V(w, \lambda) \) (excludes Bayesian criteria \(V(w, \lambda) = \frac{\int w \lambda d\mu}{\int \lambda d\mu} \) for infinite \(\Theta \))
likelihood decision criteria

- likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w' : \Theta \to [0, +\infty[$ and all likelihood functions $\lambda, \lambda_n : \Theta \to [0, 1]$
 - **monotonicity:** $w \leq w'$ (pointwise) \Rightarrow $V(w, \lambda) \leq V(w', \lambda)$ (implied by meaning of W)
 - **parametrization invariance:** $b : \Theta \to \Theta$ bijection \Rightarrow $V(w \circ b, \lambda \circ b) = V(w, \lambda)$ (excludes Bayesian criteria $V(w, \lambda) = \frac{\int w \lambda d\mu}{\int \lambda d\mu}$ for infinite Θ)
 - **consistency:** $\mathcal{H} \subseteq \Theta$ with $\lim_{n \to \infty} \sup_{\theta \in \Theta \setminus \mathcal{H}} \lambda_n(\theta) = 0 \Rightarrow \lim_{n \to \infty} V(c I_\mathcal{H} + c' I_{\Theta \setminus \mathcal{H}}, \lambda_n) = c$ for all constants $c, c' \in [0, +\infty[$
likelihood decision criteria

- likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w': \Theta \to [0, +\infty]$ and all likelihood functions $\lambda, \lambda_n: \Theta \to [0, 1]$
 - **monotonicity:** $w \leq w'$ (pointwise) \Rightarrow $V(w, \lambda) \leq V(w', \lambda)$ (implied by meaning of W)
 - **parametrization invariance:** $b: \Theta \to \Theta$ bijection \Rightarrow $V(w \circ b, \lambda \circ b) = V(w, \lambda)$ (excludes Bayesian criteria $V(w, \lambda) = \int w \lambda d\mu / \int \lambda d\mu$ for infinite Θ)
 - **consistency:** $H \subseteq \Theta$ with $\lim_{n \to \infty} \sup_{\theta \in \Theta \setminus H} \lambda_n(\theta) = 0$ \Rightarrow $\lim_{n \to \infty} V(c I_H + c' I_{\Theta \setminus H}, \lambda_n) = c$ for all constants $c, c' \in [0, +\infty]$ (excludes minimax criterion $V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta)$, implies calibration: $V(c, \lambda) = c$)
likelihood decision criteria

- likelihood decision criterion: minimize $V(W(\cdot, d), \lambda_x)$, where the functional V must satisfy the following three properties, for all functions $w, w': \Theta \to [0, +\infty[$ and all likelihood functions $\lambda, \lambda_n : \Theta \to [0, 1]$

 - **monotonicity:** $w \leq w'$ (pointwise) \Rightarrow $V(w, \lambda) \leq V(w', \lambda)$ (implied by meaning of W)

 - **parametrization invariance:** $b : \Theta \to \Theta$ bijection \Rightarrow $V(w \circ b, \lambda \circ b) = V(w, \lambda)$ (excludes Bayesian criteria $V(w, \lambda) = \int w \lambda d\mu / \int \lambda d\mu$ for infinite Θ)

 - **consistency:** $\mathcal{H} \subseteq \Theta$ with $\lim_{n \to \infty} \sup_{\theta \in \Theta \setminus \mathcal{H}} \lambda_n(\theta) = 0$ \Rightarrow $\lim_{n \to \infty} V(c I_{\mathcal{H}} + c' I_{\Theta \setminus \mathcal{H}}, \lambda_n) = c$ for all constants $c, c' \in [0, +\infty[$ (excludes minimax criterion $V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta)$, implies calibration: $V(c, \lambda) = c$)

- likelihood decision function: $\delta : \mathcal{X} \to \mathcal{D}$ such that $\delta(x)$ minimizes $V(W(\cdot, d), \lambda_x)$
properties

- likelihood decision criteria have the advantages of post-data methods:

\[
\lim_{n \to \infty} W(\theta, \delta_n(X_1, \ldots, X_n)) = \inf_{d \in \mathcal{D}} W(\theta, d) P(\theta) \text{-a.s.}
\]
likelihood decision criteria have the advantages of post-data methods:
 - independence from choice of possible alternative observations
likelihood decision criteria have the advantages of post-data methods:

- independence from choice of possible alternative observations
- direct interpretation
properties

- likelihood decision criteria have the advantages of post-data methods:
 - independence from choice of possible alternative observations
 - direct interpretation
 - simpler problems

likelihood decision functions \(\delta_n : X_1 \times \cdots \times X_n \to D \) satisfy
\[
\lim_{n \to \infty} W(\theta, \delta_n(X_1, \ldots, X_n)) = \inf_{d \in D} W(\theta, d) P_{\theta} \text{-a.s.}
\]
properties

- likelihood decision criteria have the advantages of post-data methods:
 - independence from choice of possible alternative observations
 - direct interpretation
 - simpler problems

- likelihood decision criteria have also important pre-data properties:
likelihood decision criteria have the advantages of post-data methods:

- independence from choice of possible alternative observations
- direct interpretation
- simpler problems

likelihood decision criteria have also important pre-data properties:

- equivariance: for invariant decision problems, the likelihood decision functions are equivariant
properties

- likelihood decision criteria have the advantages of post-data methods:
 - independence from choice of possible alternative observations
 - direct interpretation
 - simpler problems

- likelihood decision criteria have also important pre-data properties:
 - equivariance: for invariant decision problems, the likelihood decision functions are equivariant
 - asymptotic optimality: under some regularity conditions, the likelihood decision functions \(\delta_n : \mathcal{X}_1 \times \cdots \times \mathcal{X}_n \rightarrow \mathcal{D} \) satisfy

\[
\lim_{n \to \infty} W(\theta, \delta_n(X_1, \ldots, X_n)) = \inf_{d \in \mathcal{D}} W(\theta, d) \quad P_\theta\text{-a.s.}
\]
MPL criterion

- MPL criterion: minimize \(\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta) \).
MPL criterion

- MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to
 $V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta)$
MPL criterion

- MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

$$V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta)$$

(nonadditive integral of w with respect to $H \mapsto \sup_{\theta \in H} \lambda(\theta)$)

- Point estimation: $D = \Theta$ finite

- $W(\theta, \hat{\theta}) = \begin{cases} d & \theta \neq \hat{\theta} \\ 0 & \theta = \hat{\theta} \end{cases}$

- Simple loss function

- The maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion

- Hypothesis testing: $D = \{ H_0, H_1 \}$ with $H_0: \theta \in H$ and $H_1: \theta \in \Theta \setminus H$

- $W(\theta, H_1) = c$ if $\theta \in H$ and $W(\theta, H_0) = c'$ if $\theta \in \Theta \setminus H$ with $c \geq c'$

- The likelihood ratio test with critical value c'/c is the likelihood decision function resulting from the MPL criterion
MPL criterion

- MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to
 \[V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta) \]
 (nonadditive integral of w with respect to $H \mapsto \sup_{\theta \in H} \lambda(\theta)$)

- point estimation:
MPL criterion

- MPL criterion: minimize \(\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta) \), corresponds to
 \[
 V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta)
 \]
 (nonadditive integral of \(w \) with respect to \(\mathcal{H} \mapsto \sup_{\theta \in \mathcal{H}} \lambda(\theta) \))

- point estimation:
 - \(\mathcal{D} = \Theta \) finite
MPL criterion

- MPL criterion: minimize \(\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta) \), corresponds to
 \[
 V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta)
 \]
 (nonadditive integral of \(w \) with respect to \(\mathcal{H} \mapsto \sup_{\theta \in \mathcal{H}} \lambda(\theta) \))

- point estimation:
 - \(\mathcal{D} = \Theta \) finite
 - \(W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}} \) simple loss function
MPL criterion

- MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

 $$V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta)$$

 (nonadditive integral of w with respect to $\mathcal{H} \mapsto \sup_{\theta \in \mathcal{H}} \lambda(\theta)$)

- point estimation:
 - $D = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion
MPL criterion

- MPL criterion: minimize \(\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta) \), corresponds to
 \[
 V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta)
 \]
 (nonadditive integral of \(w \) with respect to \(\mathcal{H} \mapsto \sup_{\theta \in \mathcal{H}} \lambda(\theta) \))

- point estimation:
 - \(\mathcal{D} = \Theta \) finite
 - \(W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}} \) simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion

- hypothesis testing:
MPL criterion

- MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to
 $$V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta)$$
 (nonadditive integral of w with respect to $\mathcal{H} \mapsto \sup_{\theta \in \mathcal{H}} \lambda(\theta)$)

- point estimation:
 - $\mathcal{D} = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion

- hypothesis testing:
 - $\mathcal{D} = \{H_0, H_1\}$ with $H_0 : \theta \in \mathcal{H}$ and $H_1 : \theta \in \Theta \setminus \mathcal{H}$
MPL criterion

- MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to

 $V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta)$

 (nonadditive integral of w with respect to $\mathcal{H} \mapsto \sup_{\theta \in \mathcal{H}} \lambda(\theta)$)

- point estimation:
 - $D = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion

- hypothesis testing:
 - $D = \{H_0, H_1\}$ with $H_0 : \theta \in \mathcal{H}$ and $H_1 : \theta \in \Theta \setminus \mathcal{H}$
 - $W(\theta, H_1) = c I_{\theta \in \mathcal{H}}$ and $W(\theta, H_0) = c' I_{\theta \in \Theta \setminus \mathcal{H}}$ with $c \geq c'$
MPL criterion

- MPL criterion: minimize $\sup_{\theta \in \Theta} W(\theta, d) \lambda_x(\theta)$, corresponds to
 \[V(w, \lambda) = \sup_{\theta \in \Theta} w(\theta) \lambda(\theta) \]
 (nonadditive integral of w with respect to $\mathcal{H} \mapsto \sup_{\theta \in \mathcal{H}} \lambda(\theta)$)

- point estimation:
 - $\mathcal{D} = \Theta$ finite
 - $W(\theta, \hat{\theta}) = I_{\theta \neq \hat{\theta}}$ simple loss function
 - the maximum likelihood estimator (when well-defined) is the likelihood decision function resulting from the MPL criterion

- hypothesis testing:
 - $\mathcal{D} = \{H_0, H_1\}$ with $H_0 : \theta \in \mathcal{H}$ and $H_1 : \theta \notin \Theta \setminus \mathcal{H}$
 - $W(\theta, H_1) = c I_{\theta \in \mathcal{H}}$ and $W(\theta, H_0) = c' I_{\theta \notin \Theta \setminus \mathcal{H}}$ with $c \geq c'$
 - the likelihood ratio test with critical value c'/c is the likelihood decision function resulting from the MPL criterion
a simple example

- $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)
a simple example

- $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)

- estimation of θ with squared error:
a simple example

- $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)

- estimation of θ with squared error:
 - $D = \Theta$ with $W(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$
a simple example

- $X_1, \ldots, X_n \sim \text{i.i.d. } N(\theta, \sigma^2)$ with $\Theta = \mathbb{R}_+$ (that is, θ positive and σ known)

- estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior
a simple example

- $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta = [0, +\infty]$ (that is, θ positive and σ known)

- estimation of θ with squared error:
 - $D = \Theta$ with $W(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior

- likelihood decision function resulting from the MPL criterion:
a simple example

- $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)

- estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior

- likelihood decision function resulting from the MPL criterion:
 - scale invariance and sufficiency: $\hat{\theta}(x_1, \ldots, x_n) = g\left(\frac{\bar{x}}{\sigma/\sqrt{n}}\right)^{\sigma/\sqrt{n}}$
a simple example

- $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)

- estimation of θ with squared error:
 - $\mathcal{D} = \Theta$ with $W(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior

- likelihood decision function resulting from the MPL criterion:
 - scale invariance and sufficiency: $\hat{\theta}(x_1, \ldots, x_n) = g\left(\frac{\bar{x}}{\sigma/\sqrt{n}}\right)\sigma/\sqrt{n}$
 - asymptotic optimality (consistency): $\hat{\theta}(x_1, \ldots, x_n) = \bar{x}$ when $\bar{x} \geq \sqrt{2}\sigma/\sqrt{n}$
a simple example

- $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)

- estimation of θ with squared error:
 - $D = \Theta$ with $W(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior

- likelihood decision function resulting from the MPL criterion:
 - scale invariance and sufficiency: $\hat{\theta}(x_1, \ldots, x_n) = g(\frac{\bar{x}}{\sigma/\sqrt{n}})\sigma/\sqrt{n}$
 - asymptotic optimality (consistency): $\hat{\theta}(x_1, \ldots, x_n) = \bar{x}$ when $\bar{x} \geq \sqrt{2}\sigma/\sqrt{n}$
a simple example

- $X_1, \ldots, X_n \overset{i.i.d.}{\sim} N(\theta, \sigma^2)$ with $\Theta =]0, +\infty[$ (that is, θ positive and σ known)

- estimation of θ with squared error:
 - $D = \Theta$ with $W(\theta, \hat{\theta}) = (\theta - \hat{\theta})^2$
 - no unbiased estimator, maximum likelihood estimator not well-defined, no standard (proper) Bayesian prior

- likelihood decision function resulting from the MPL criterion:
 - scale invariance and sufficiency: $\hat{\theta}(X_1, \ldots, X_n) = g\left(\frac{\bar{x}}{\sigma/\sqrt{n}}\right)\sigma/\sqrt{n}$
 - asymptotic optimality (consistency): $\hat{\theta}(X_1, \ldots, X_n) = \bar{x}$ when $\bar{x} \geq \sqrt{2} \sigma/\sqrt{n}$
Conclusion

- this work:
 - fills a gap in the likelihood approach to statistics
conclusion

- this work:
 - fills a gap in the likelihood approach to statistics
 - introduces an alternative to classical and Bayesian decision making
conclusion

- this work:
 - fills a gap in the likelihood approach to statistics
 - introduces an alternative to classical and Bayesian decision making
 - offers a new perspective on the likelihood methods
conclusion

- this work:
 - fills a gap in the likelihood approach to statistics
 - introduces an alternative to classical and Bayesian decision making
 - offers a new perspective on the likelihood methods

- likelihood decision making:
 - is post-data and equivariant
conclusion

- this work:
 - fills a gap in the likelihood approach to statistics
 - introduces an alternative to classical and Bayesian decision making
 - offers a new perspective on the likelihood methods

- likelihood decision making:
 - is post-data and equivariant
 - is asymptotically optimal
conclusion

- this work:
 - fills a gap in the likelihood approach to statistics
 - introduces an alternative to classical and Bayesian decision making
 - offers a new perspective on the likelihood methods

- likelihood decision making:
 - is post-data and equivariant
 - is asymptotically optimal
 - does not need prior information